任何机器学习解决方案的鲁棒性从根本上受到培训的数据的约束。超越原始培训的一种方法是通过对原始数据集的人为增强。但是,不可能指定部署过程中可能发生的所有可能发生的故障案例。为了解决这个限制,我们将基于模型的增强学习和模型解关方法结合在一起,提出了一种解决方案,该解决方案会自我生成的模拟场景受到环境概念和动态的约束,并以无聊的方式学习。特别是,代理环境的内部模型是基于对代理动作敏感的输入空间的低维概念表示。我们在简单的点对点导航任务中在标准逼真的驾驶模拟器中演示了这种方法,我们在其中显示了与指定失败情况不同实例的一击概括以及与相似变化的零弹性概括相比,我们显示出巨大的改进。基于模型和无模型的方法。
translated by 谷歌翻译
元钢筋学习(Meta-RL)算法使得能够快速适应动态环境中的少量样本的任务。通过代理策略网络中的动态表示(通过推理关于任务上下文,模型参数更新或两者)获得的动态表示来实现这样的壮举。然而,由于在策略网络上满足不同的政策,因此获得了超越简单基准问题的快速适应的丰富动态表示是具有挑战性的。本文通过将神经调节引入模块化组件来解决挑战,以增加调节神经元活动的标准策略网络,以便为任务适应提供有效的动态表示。策略网络的建议扩展是在越来越复杂的多个离散和连续控制环境中进行评估。为了证明在Meta-R1中的延伸的一般性和益处,将神经调序的网络应用于两个最先进的META-RL算法(胱瓦和珍珠)。结果表明,与基线相比,通过神经调节增强的Meta-R1产生明显更好的结果和更丰富的动态表示。
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
From smoothly pursuing moving objects to rapidly shifting gazes during visual search, humans employ a wide variety of eye movement strategies in different contexts. While eye movements provide a rich window into mental processes, building generative models of eye movements is notoriously difficult, and to date the computational objectives guiding eye movements remain largely a mystery. In this work, we tackled these problems in the context of a canonical spatial planning task, maze-solving. We collected eye movement data from human subjects and built deep generative models of eye movements using a novel differentiable architecture for gaze fixations and gaze shifts. We found that human eye movements are best predicted by a model that is optimized not to perform the task as efficiently as possible but instead to run an internal simulation of an object traversing the maze. This not only provides a generative model of eye movements in this task but also suggests a computational theory for how humans solve the task, namely that humans use mental simulation.
translated by 谷歌翻译
Wearable sensors for measuring head kinematics can be noisy due to imperfect interfaces with the body. Mouthguards are used to measure head kinematics during impacts in traumatic brain injury (TBI) studies, but deviations from reference kinematics can still occur due to potential looseness. In this study, deep learning is used to compensate for the imperfect interface and improve measurement accuracy. A set of one-dimensional convolutional neural network (1D-CNN) models was developed to denoise mouthguard kinematics measurements along three spatial axes of linear acceleration and angular velocity. The denoised kinematics had significantly reduced errors compared to reference kinematics, and reduced errors in brain injury criteria and tissue strain and strain rate calculated via finite element modeling. The 1D-CNN models were also tested on an on-field dataset of college football impacts and a post-mortem human subject dataset, with similar denoising effects observed. The models can be used to improve detection of head impacts and TBI risk evaluation, and potentially extended to other sensors measuring kinematics.
translated by 谷歌翻译
A reduced order model of a generic submarine is presented. Computational fluid dynamics (CFD) results are used to create and validate a model that includes depth dependence and the effect of waves on the craft. The model and the procedure to obtain its coefficients are discussed, and examples of the data used to obtain the model coefficients are presented. An example of operation following a complex path is presented and results from the reduced order model are compared to those from an equivalent CFD calculation. The controller implemented to complete these maneuvers is also presented.
translated by 谷歌翻译
Speech-centric machine learning systems have revolutionized many leading domains ranging from transportation and healthcare to education and defense, profoundly changing how people live, work, and interact with each other. However, recent studies have demonstrated that many speech-centric ML systems may need to be considered more trustworthy for broader deployment. Specifically, concerns over privacy breaches, discriminating performance, and vulnerability to adversarial attacks have all been discovered in ML research fields. In order to address the above challenges and risks, a significant number of efforts have been made to ensure these ML systems are trustworthy, especially private, safe, and fair. In this paper, we conduct the first comprehensive survey on speech-centric trustworthy ML topics related to privacy, safety, and fairness. In addition to serving as a summary report for the research community, we point out several promising future research directions to inspire the researchers who wish to explore further in this area.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
In recent years, image and video delivery systems have begun integrating deep learning super-resolution (SR) approaches, leveraging their unprecedented visual enhancement capabilities while reducing reliance on networking conditions. Nevertheless, deploying these solutions on mobile devices still remains an active challenge as SR models are excessively demanding with respect to workload and memory footprint. Despite recent progress on on-device SR frameworks, existing systems either penalize visual quality, lead to excessive energy consumption or make inefficient use of the available resources. This work presents NAWQ-SR, a novel framework for the efficient on-device execution of SR models. Through a novel hybrid-precision quantization technique and a runtime neural image codec, NAWQ-SR exploits the multi-precision capabilities of modern mobile NPUs in order to minimize latency, while meeting user-specified quality constraints. Moreover, NAWQ-SR selectively adapts the arithmetic precision at run time to equip the SR DNN's layers with wider representational power, improving visual quality beyond what was previously possible on NPUs. Altogether, NAWQ-SR achieves an average speedup of 7.9x, 3x and 1.91x over the state-of-the-art on-device SR systems that use heterogeneous processors (MobiSR), CPU (SplitSR) and NPU (XLSR), respectively. Furthermore, NAWQ-SR delivers an average of 3.2x speedup and 0.39 dB higher PSNR over status-quo INT8 NPU designs, but most importantly mitigates the negative effects of quantization on visual quality, setting a new state-of-the-art in the attainable quality of NPU-based SR.
translated by 谷歌翻译
Atrial Fibrillation (AF) is characterized by disorganised electrical activity in the atria and is known to be sustained by the presence of regions of fibrosis (scars) or functional cellular remodeling, both of which may lead to areas of slow conduction. Estimating the effective conductivity of the myocardium and identifying regions of abnormal propagation is therefore crucial for the effective treatment of AF. We hypothesise that the spatial distribution of tissue conductivity can be directly inferred from an array of concurrently acquired contact electrograms (EGMs). We generate a dataset of simulated cardiac AP propagation using randomised scar distributions and a phenomenological cardiac model and calculate contact electrograms at various positions on the field. A deep neural network, based on a modified U-net architecture, is trained to estimate the location of the scar and quantify conductivity of the tissue with a Jaccard index of $91$%. We adapt a wavelet-based surrogate testing analysis to confirm that the inferred conductivity distribution is an accurate representation of the ground truth input to the model. We find that the root mean square error (RMSE) between the ground truth and our predictions is significantly smaller ($p_{val}=0.007$) than the RMSE between the ground truth and surrogate samples.
translated by 谷歌翻译